Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Campus

Puzzel

Ook afgelopen week stroomden de goede oplossingen weer binnen. Er waren zelfs hele snelle oplossingen bij; om half elf kreeg ik al de eerste goede oplossing.

br />
Volgende week verschijnt er geen Delta dus heb je drie weken de tijd om de logische puzzel op te lossen. Dit keer daarom een uitdager.

De goede oplossing kan voor 14 maart gestuurd worden naar g.muurling@twi.tudelft.nl onder vermelding van logische puzzel 4. Onder de goede inzendingen zal een cadeaubon van 25 gulden worden verloot.

De winnaar van logische puzzel 3 is: John Brusche

Veel puzzelplezier ,

Oplossing Soap

Maximaal kan iemand 10 relaties hebben gehad (niet met zichzelf & broertje/zusje). Dat betekent dat het aantal relaties dat ik heb geteld: 0,1,2,3,4,5,6,7,8,9 en 10 is.

Stel A heeft tien relaties gehad, dan heeft diens broer/ zus 0 relaties gehad, want de anderen hebben al minimaal 1 relatie namelijk met A.

Zo gaat dat verder:

Stel dan B heeft 9 relaties gehad, dan heeft diens broer/ zus 1 relaties gehad.

In een gezin hebben de beide kinderen dus samen 10 relaties gehad. De broer of zus van Marc heeft dus 5 relaties gehad, en Marc dan ook 5 relaties.

Domino

Een poosje geleden kwam ik bij het opruimen van een kast een oud domino-spel tegen. Die avond zat ik daar wat mee te spelen en kwam al snel tot de conclusie dat het spel compleet was. Daarna probeerde ik alle stenen om beurten aan elkaar te leggen. Toen ik nog 7 stenen over had viel me ineens iets bijzonders op. Van alle aantallen ogen waren er nog precies twee. Daar bedoel ik mee dat er nog precies twee lege helften waren, twee helften met één stip, enzovoort.

Ik legde de stenen in de breedte voor me op tafel. Met een beetje fantasie waren hier zeven getallen in te zien. Zo representeert een steen met links 5 ogen en rechts 1 oog het getal 51. Als ik de steen 180 graden draai ontstaat het getal 15.

Verder hebben de zeven getallen de volgende eigenschappen:

Er is zijn geen priemgetallen groter dan 13..

Er zijn 5 getallen deelbaar door 2.

Er zijn 2 getallen deelbaar door 3.

Er zijn 2 getallen deelbaar door 4.

Er zijn 3 getallen deelbaar door 5.

Er is 1 getal deelbaar door 6.

Er zijn 2 getallen deelbaar door 7.

Er is 1 getal deelbaar door 8.

Er is 1 getal deelbaar door 9.

Er is 1 getal deelbaar door 10.

Er zijn geen getallen deelbaar door 11.

Er is 1 getal deelbaar door 12.

Er zijn geen getallen deelbaar door 13.

Welke stenen had ik voor me liggen?

Ook afgelopen week stroomden de goede oplossingen weer binnen. Er waren zelfs hele snelle oplossingen bij; om half elf kreeg ik al de eerste goede oplossing.

Volgende week verschijnt er geen Delta dus heb je drie weken de tijd om de logische puzzel op te lossen. Dit keer daarom een uitdager.

De goede oplossing kan voor 14 maart gestuurd worden naar g.muurling@twi.tudelft.nl onder vermelding van logische puzzel 4. Onder de goede inzendingen zal een cadeaubon van 25 gulden worden verloot.

De winnaar van logische puzzel 3 is: John Brusche

Veel puzzelplezier ,

Oplossing Soap

Maximaal kan iemand 10 relaties hebben gehad (niet met zichzelf & broertje/zusje). Dat betekent dat het aantal relaties dat ik heb geteld: 0,1,2,3,4,5,6,7,8,9 en 10 is.

Stel A heeft tien relaties gehad, dan heeft diens broer/ zus 0 relaties gehad, want de anderen hebben al minimaal 1 relatie namelijk met A.

Zo gaat dat verder:

Stel dan B heeft 9 relaties gehad, dan heeft diens broer/ zus 1 relaties gehad.

In een gezin hebben de beide kinderen dus samen 10 relaties gehad. De broer of zus van Marc heeft dus 5 relaties gehad, en Marc dan ook 5 relaties.

Domino

Een poosje geleden kwam ik bij het opruimen van een kast een oud domino-spel tegen. Die avond zat ik daar wat mee te spelen en kwam al snel tot de conclusie dat het spel compleet was. Daarna probeerde ik alle stenen om beurten aan elkaar te leggen. Toen ik nog 7 stenen over had viel me ineens iets bijzonders op. Van alle aantallen ogen waren er nog precies twee. Daar bedoel ik mee dat er nog precies twee lege helften waren, twee helften met één stip, enzovoort.

Ik legde de stenen in de breedte voor me op tafel. Met een beetje fantasie waren hier zeven getallen in te zien. Zo representeert een steen met links 5 ogen en rechts 1 oog het getal 51. Als ik de steen 180 graden draai ontstaat het getal 15.

Verder hebben de zeven getallen de volgende eigenschappen:

Er is zijn geen priemgetallen groter dan 13..

Er zijn 5 getallen deelbaar door 2.

Er zijn 2 getallen deelbaar door 3.

Er zijn 2 getallen deelbaar door 4.

Er zijn 3 getallen deelbaar door 5.

Er is 1 getal deelbaar door 6.

Er zijn 2 getallen deelbaar door 7.

Er is 1 getal deelbaar door 8.

Er is 1 getal deelbaar door 9.

Er is 1 getal deelbaar door 10.

Er zijn geen getallen deelbaar door 11.

Er is 1 getal deelbaar door 12.

Er zijn geen getallen deelbaar door 13.

Welke stenen had ik voor me liggen?

Redacteur Redactie

Heb je een vraag of opmerking over dit artikel?

delta@tudelft.nl

Comments are closed.