Campus

Logische puzzel 5

Logische puzzel 4 was toch wat lastiger dan sommigen dachten. Voor het eerst kreeg ik ook niet correcte antwoorden binnen. Daarnaast hebben sommigen terecht opgemerkt dat de aanwijzing over de priemgetallen overbodig was.

br />
Dit keer weer een wat makkelijker opgave. De oplossing kan voor 28 maart worden gestuurd naar g.muurling@twi.tudelft.nl onder vermelding van logische puzzel 5. Onder de goede inzendingen wordt een boekenbon van 25 gulden verloot.

De winnaar van puzzel 4 is: Jeroen Schuuring.

Licht genoeg zonder regenpak?

Er zijn sporten waarin men gewichtsklassen kent, bijvoorbeeld boksen en judo. Bij het roeien zijn er twee klassen: licht en zwaar.

Voor de categorie lichte mannen geldt:

Geen van de roeiers mag zwaarder zijn dan 72,5 kg.

Het gemiddelde gewicht van ploeg mag niet meer dan 70 kg bedragen.

De vrouwen kennen een vergelijkbaar systeem maar dan met andere gewichtsgrenzen.

Vaak hebben eerstejaars lichte roeiers veel moeite met hun gewicht. Om de wedstrijd dan toch nog te kunnen starten moeten er allerlei trucs worden uitgehaald om nog die laatste paar ons af te vallen (bijvoorbeeld hardlopen in een regenpak om vocht te verliezen). De ploegen die ik tot nu toe heb gecoached waren damesploegen die weer andere problemen hadden maar gelukkig niet dat vreselijke afvallen.

Dit jaar is de coach van de eerstejaars lichte acht ziek geworden en ik zal hem tijdelijk vervangen. De ploeg bestaat uit negen roeiers. Bij elke wedstrijd doet een van hen dus niet mee.

Omdat mijn motto is: %Beter voorkomen dan genezen”, besluit ik op tijd te controleren hoe het met het gewicht van deze ploeg gesteld is.

Iedereen weet dat vrouwen soms wat moeilijk kunnen doen over het vertellen van hun gewicht maar deze heren sloegen alles. Ze willen me hun gewicht niet vertellen. Als compromis kan ik ze echter wel overhalen om me het totaal gewicht van alle combinaties van acht roeiers te vertellen. Deze gewichten zijn: 552 kg, 555.5 kg, 555.5 kg, 555 kg, 555 kg, 554.5 kg, 554.5 kg, 556.5 kg en 557.5 kg.

Alles lijkt in orde, immers in alle combinaties is het totaal gewicht lager dan 8*70 kg=560 kg. Maar kunnen nu al deze combinaties van acht roeiers ook daadwerkelijk inwegen? Of te wel hoe zwaar is elke roeier?

Oplossing Domino

Om het een beetje overzichtelijk te houden heb ik hieronder heel beknopt beschreven hoe het antwoord gevonden kan worden, maar er leiden natuurlijk vele wegen naar Rome.

We kijken eerst naar de 5- en 10-vouden. Er volgt dat: twee getallen eindigen op 5 en eentje eindigt op een nul. Er begint dus ook een getal met een nul.

Er zijn 5 even getallen. Dit moeten dus de getallen zijn die niet op een 5 eindigen.

We kijken naar de 3-, 6- en 12-vouden. Er is een oneven en een even drievoud.

Dat oneven drievoud moet dan eindigen op een 5. Enige mogelijkheden :15 en 45.

Het even 3-voud moet dan een 12-voud (en dus 6-voud) zijn. Mogelijkheden: 12, 24, 36 en 60.

Als mogelijkheden voor het 9-voud blijven over: 45 en 36.

Er moeten twee 7-vouden zijn. Daar vallen een heleboel van af. Ook 42 valt af omdat dat een 6-voud is maar geen 12-voud. We houden dan alleen nog maar over: 14 en 35 . De eerste twee antwoorden.

De mogelijkheid 05 vervalt hiermee. Het getal dat begint met een 0 kan nu dus alleen maar 02, 04 of 06 zijn.

06 valt af omdat het een 6-voud en geen 12-voud is.

04 valt ook af. Gaan we er namelijk van uit dat het 04 is dan vinden we de volgende getallen die niet blijken te voldoen aan de opgave: 14, 35, 04, 15, 20, 36, 62.

02 is dus een van de getallen.

Stel 45 zit bij de getallen, dan krijgen we weer een aantal getallen dat niet voldoet. We weten nu dat 15 erbij zit. 36 is dan het enige overgebleven 9-voud.

We hebben dan het volgende: 14, 35, 158, 02, 36, .0, ..

Er mag geen 12-voud meer zijn dus 60 valt af. We gebruiken nu de eigenschap dat elk cijfer twee maal voorkomt. We moeten de 2, 4 en 6 nog een plaatsje geven. We hoeven nu nog maar drie mogelijkheden na te gaan; namelijk twee met de aanname dat 20 erbij zit en een met de aanname dat het 40 is.

We vinden dan als antwoord: 14, 35, 15, 02, 36, 40, 62 .

Logische puzzel 4 was toch wat lastiger dan sommigen dachten. Voor het eerst kreeg ik ook niet correcte antwoorden binnen. Daarnaast hebben sommigen terecht opgemerkt dat de aanwijzing over de priemgetallen overbodig was.

Dit keer weer een wat makkelijker opgave. De oplossing kan voor 28 maart worden gestuurd naar g.muurling@twi.tudelft.nl onder vermelding van logische puzzel 5. Onder de goede inzendingen wordt een boekenbon van 25 gulden verloot.

De winnaar van puzzel 4 is: Jeroen Schuuring.

Licht genoeg zonder regenpak?

Er zijn sporten waarin men gewichtsklassen kent, bijvoorbeeld boksen en judo. Bij het roeien zijn er twee klassen: licht en zwaar.

Voor de categorie lichte mannen geldt:

Geen van de roeiers mag zwaarder zijn dan 72,5 kg.

Het gemiddelde gewicht van ploeg mag niet meer dan 70 kg bedragen.

De vrouwen kennen een vergelijkbaar systeem maar dan met andere gewichtsgrenzen.

Vaak hebben eerstejaars lichte roeiers veel moeite met hun gewicht. Om de wedstrijd dan toch nog te kunnen starten moeten er allerlei trucs worden uitgehaald om nog die laatste paar ons af te vallen (bijvoorbeeld hardlopen in een regenpak om vocht te verliezen). De ploegen die ik tot nu toe heb gecoached waren damesploegen die weer andere problemen hadden maar gelukkig niet dat vreselijke afvallen.

Dit jaar is de coach van de eerstejaars lichte acht ziek geworden en ik zal hem tijdelijk vervangen. De ploeg bestaat uit negen roeiers. Bij elke wedstrijd doet een van hen dus niet mee.

Omdat mijn motto is: %Beter voorkomen dan genezen”, besluit ik op tijd te controleren hoe het met het gewicht van deze ploeg gesteld is.

Iedereen weet dat vrouwen soms wat moeilijk kunnen doen over het vertellen van hun gewicht maar deze heren sloegen alles. Ze willen me hun gewicht niet vertellen. Als compromis kan ik ze echter wel overhalen om me het totaal gewicht van alle combinaties van acht roeiers te vertellen. Deze gewichten zijn: 552 kg, 555.5 kg, 555.5 kg, 555 kg, 555 kg, 554.5 kg, 554.5 kg, 556.5 kg en 557.5 kg.

Alles lijkt in orde, immers in alle combinaties is het totaal gewicht lager dan 8*70 kg=560 kg. Maar kunnen nu al deze combinaties van acht roeiers ook daadwerkelijk inwegen? Of te wel hoe zwaar is elke roeier?

Oplossing Domino

Om het een beetje overzichtelijk te houden heb ik hieronder heel beknopt beschreven hoe het antwoord gevonden kan worden, maar er leiden natuurlijk vele wegen naar Rome.

We kijken eerst naar de 5- en 10-vouden. Er volgt dat: twee getallen eindigen op 5 en eentje eindigt op een nul. Er begint dus ook een getal met een nul.

Er zijn 5 even getallen. Dit moeten dus de getallen zijn die niet op een 5 eindigen.

We kijken naar de 3-, 6- en 12-vouden. Er is een oneven en een even drievoud.

Dat oneven drievoud moet dan eindigen op een 5. Enige mogelijkheden :15 en 45.

Het even 3-voud moet dan een 12-voud (en dus 6-voud) zijn. Mogelijkheden: 12, 24, 36 en 60.

Als mogelijkheden voor het 9-voud blijven over: 45 en 36.

Er moeten twee 7-vouden zijn. Daar vallen een heleboel van af. Ook 42 valt af omdat dat een 6-voud is maar geen 12-voud. We houden dan alleen nog maar over: 14 en 35 . De eerste twee antwoorden.

De mogelijkheid 05 vervalt hiermee. Het getal dat begint met een 0 kan nu dus alleen maar 02, 04 of 06 zijn.

06 valt af omdat het een 6-voud en geen 12-voud is.

04 valt ook af. Gaan we er namelijk van uit dat het 04 is dan vinden we de volgende getallen die niet blijken te voldoen aan de opgave: 14, 35, 04, 15, 20, 36, 62.

02 is dus een van de getallen.

Stel 45 zit bij de getallen, dan krijgen we weer een aantal getallen dat niet voldoet. We weten nu dat 15 erbij zit. 36 is dan het enige overgebleven 9-voud.

We hebben dan het volgende: 14, 35, 158, 02, 36, .0, ..

Er mag geen 12-voud meer zijn dus 60 valt af. We gebruiken nu de eigenschap dat elk cijfer twee maal voorkomt. We moeten de 2, 4 en 6 nog een plaatsje geven. We hoeven nu nog maar drie mogelijkheden na te gaan; namelijk twee met de aanname dat 20 erbij zit en een met de aanname dat het 40 is.

We vinden dan als antwoord: 14, 35, 15, 02, 36, 40, 62 .

Redacteur Redactie

Heb je een vraag of opmerking over dit artikel?

delta@tudelft.nl

Comments are closed.