Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Wetenschap

Interactive robotics from space

On Monday, September 7. 12:00 an invisible hand from space reached out to control its robotic counterpart on earth…
Sounds like the opening sequence of a new SciFi flick? In this case, truth is actually cooler than fiction.

In the second week of September, the European Space Agency (ESA) and the TU Delft Robotics Institute tested a critical new phase in interactive robotics in space.

Danish astronaut Andreas Mogensen, who is currently at the International Space Station for the 2015 ESA Short Duration Mission, controlled the robotic hand and vehicle here on earth. The astronaut made the robot perform mechanical tasks in real-time with force-feedback. Called Interact, the space experiment was led by Dr. André Schiele, TU Delft Associate Professor and the founder of the ESA Telerobotics and Haptics Laboratory.

What did Mogensen do?

The robotic hand is part of a rover at the ESA technical centre in Noordwijk. Called the Interact Centaur, it is linked to the International Space Station using a haptic joystick. Using the joystick, Mogensen manoeuvred the rover through an obstacle course and performed a peg-in-hole operation with tight mechanical tolerance.

Sounds simple? Why is it a big deal?

“Tasks such as tying shoelaces or using a screwdriver are easy for the human brain even though they demand a high degree of precision primarily because they are tactile. For remote-controlled tasks (teleoperations), this tactility is replaced by something called haptic feedback – a virtual sense of the object being navigated. In this instance, haptic feedback allows the astronaut to physically feel whether the connector is correctly inserted and how to adjust it for a better fit,” said Schiele. It is important to note that they are also studying how microgravity environments can affect haptics. The project report states that the complete operation will be performed from on board the ISS, at approximately 400 km altitude, using a data connection via a geosynchronous satellite constellation at 36.000 km altitude.

The space-time conundrum

“The signal from the joystick with the astronaut travels approximately 90,000 kilometres from space, via the US, to Europe and into our test facility. This creates a time delay of up to 850 milliseconds. In Robotics usually a time delay of up to 2 milliseconds is tolerable, so this is quite significant,” said Schiele. In order to work around the time delay, they have set up two new control methods. The First is based on real-time monitoring the involves energies and is called Time Domain Passivity Observer and Controller (POPC) method and the second is a model mediation of the contact to the other side in space. “The astronaut will use both in different parts of the experiment” he added.

Why is this significant?

In its most immediate application, robotic hands and arms can be used to perform simple repairs in space. In the long run, this could mean robots can provide sensory feedback over massive distances. “Think of C-3PO on a landing mission,” said Schiele. These robots can be used in tasks such as cleaning up space debris or even exploratory missions to the Moon and Mars when they are on the surface, and the humans remain in orbit in space.

Redacteur Redactie

Heb je een vraag of opmerking over dit artikel?

delta@tudelft.nl

Comments are closed.