Campus

Huisjongste

Tijmen Chorus is eerstejaars technische aardwetenschappen en woont sinds september in ‘Het Gros’, een Virgiel-herenhuis aan de Professor Evertslaan.

De clubtrui (JC Baksteen) is net gearriveerd, dus ook de andere HJ heeft hem aan. In zijn kamer valt vooral de surround-set op, met een tv die aan de grote kant lijkt voor dit HJ-hok. Die heeft hij vorig jaar bij elkaar gespaard als teamleider bij Albert Heijn. In dit huis krijgt iedereen een huisnaam. Als je binnenkomt als HJ, kijken de ouderejaars het eerst een tijdje aan en bedenken dan een passende naam voor je. Chorus gaat dus door het leven als Danny, omdat dat schijnt te passen bij een klein persoon. Taken: afval, afwas en de deurbel.

Two weeks ago, during the first phase of the eruption, dr. Andy Hooper was actually standing on the Eyjafjallajökull gletsjer. He watched the eruption. Hooper has been using radar data to monitor this volcano for a long time and was in Iceland to help his colleagues collect more data.

Hooper is now processing the data from the volcano as it comes in: “The eruption’s first phase occurred away from the icecap and the magma dispersed. The second phase however broke through the ice. Because of this, water was involved in the eruption, and this caused the explosions and ash cloud.”
Hopper is surprised by what the data shows. “Every eruption is different, but what’s happening inside this volcano is strange”, he says. “We expected that the magma would come out of a shallow magma chamber, but instead the magma came straight up from deep inside the volcano. That’s unusual, and it makes it hard to predict how long the eruption will last. Normally I’d think it would last until the magma chamber is empty. But now I don’t think the eruption is going to end soon.”

This eruption could trigger an eruption of the much bigger, neighboring volcano, Katla. “If a source of magma goes sideways, it could affect a magma chamber inside the Katla”, Hopper warns. “And the eruption of Katla would be ten times as large, propelling ash higher inside the atmosphere and having an even bigger impact on Europe.”

The plume of ash poses a potential disaster for aircraft engines, says professor of gas turbines, propulsion and energy conversion, Jos van Buijtenen (Aerospace Engineering): “Aircraft engines take in enormous amounts of air. If this air contains ash particles, this can cause a number of disastrous problems. For instance, the particles being pulvarised – rock and glass measuring less than two millimetres – have an eroding effect on the compressor. Because of this, there is less pressure in the engine. A second effect occurs in the combustion chamber, where the temperature is very high and the particles melt and become liquid. When they leave this chamber they meet the cooler turbine blades and solidify again, which causes them to form a glass layer on those blades. This influences the straight flow of air. A lot of high pressure is then needed from the compressor, but the compressor is not able to deliver it because of the ash that’s already inside it. In fact the engine becomes ‘chocked’ and subsequently stops functioning.” And those are not even all the problems the ash can cause. “Therefore it’s the right decision not to fly,” prof. Van Buijtenen concludes

Redacteur Redactie

Heb je een vraag of opmerking over dit artikel?

delta@tudelft.nl

Comments are closed.