Science

Shake, rattle & stick

Electrically charged chips can be shaken into place with micrometre precision. Dr Iwan Kurniawan developed this electrostatic self-alignment.

Suppose you manufacture smartphones and want to incorporate external parts, like a gyroscope or a beamer chip. With current technology, the common way of placing the parts on exactly the right spot is to use a precise but slow pick and place robot. In his PhD research at the faculty of Mechanical, Maritime and Materials Engineering, Dr Iwan Kurniawan developed an alternative two-step micro positioning technique. A quick and coarse positioning of the millimetre-sized chips onto a silicon wafer is followed by a very accurate self-positioning. Shaking the wafer for about 30 seconds suffices for the chips, driven by electrostatic attraction, to fit into their slots.

Kurniawan used a silicon wafer as a base. The places where the chips should align are covered by an insulating layer of silicon dioxide (SiO2). Placed under a corona charging device, the SiO2 patches can be charged to surface potentials of hundreds of Volts. The small chips are given an opposite charge. Miniscule pegs are fabricated on the chips to prevent contact between the opposite charges as the small chips bump around on the shaking wafer. When accidentally the pegs align perfectly to the funnel-shaped slots on the wafer, the chip slips into place like a key in a lock with micrometer precision. The success rate is 100 percent, Kurniawan says.

Although the project was paid for by MicroNed, a programme aimed at developing technology for industry, manufacturers have shown little interest thus far.  Kuriawan thinks the uncertainty in processing time is holding manufacturers back: “Because the alignment process is stochastic, the process duration may vary from chip to chip.” Never-theless Kurniawan stresses that his batch processing is more appealing than the present piece-by-piece approach. 

Iwan Kurniawan, ‘Dry self-aligment for discrete components’, 3 December 2010, PhD supervisor Prof. Urs Staufer

De Good Design Awards worden ieder jaar toegekend door het Chicago Athenaeum (museum voor ontwerp en architectuur) in samenwerking met het Europese centrum voor architectuur, kunstontwerp en stedelijke studies. De lijst voor 2009 vermeldt ongeveer 700 onderscheidingen in categorieën elektronica, huishoudelijke apparaten, meubels en nog veel meer.

De ‘Interactive Wall’ van hyperBODY in opdracht van Festo valt in de categorie Robotica / Bionica, net als twee andere inzendingen van Festo.

De buigzame muur bestaat uit zeven stuks flexible vinnen van zes meter hoog. De vinnen kunnen buigen dankzij ingebouwde kunstmatige spieren. De TU-vakgroep ontwierp de muur voor Festo als ‘aandachtstrekker’ op de Hannover Messe in 2008, vertelt projectmanager ir. Chris Kievid.

“De opstelling heeft zestien sensoren”, legt Kievid uit. Die meten de afstand tot de bezoekers en tot nevenstaande vinnen. Hiermee komt een beweging tot stand die reageert op bezoekers, maar die ook een autonome choreografie heeft. Lichtspots zijn een weerspiegeling van de mate van activiteit en bovendien zenden de elementen ook een zoemtoon uit.

De Bouwkunde vakgroep hyperBODY van professor ir. Kas Oosterhuis is vooral geïnteresseerd in interactieve architectuur en ziet de interactieve muur als een stap naar de dynamische geluidswal, die zich alleen opricht als er veel verkeer is.

De prijswinnende opstelling is niet meer live te zien. Wel staat er een demofilpmje op internet.

Editor Redactie

Do you have a question or comment about this article?

delta@tudelft.nl

Comments are closed.