Education

Meer aanmeldingen voor lotingstudies

Wie moet loten voor zijn opleiding, krijgt vandaag de uitslag te horen. Al verschillen de kansen per opleiding, één ding is zeker: er zijn meer aanmeldingen voor minder plaatsen.

Bij Bouwkunde hebben zich 555 studenten aangemeld voor 450 beschikbare plaatsen, bij Industrieel Ontwerpen zijn 408 aanmeldingen voor 330 plaatsen.


Dit jaar hebben 38.584 studiekiezers zich aangemeld voor een lotingstudie, terwijl er minder dan 23 duizend plaatsen te verdelen zijn. Vorig jaar lag de verhouding gunstiger: toen waren er 37.500 aanmeldingen voor 25 duizend beschikbare plekken.


De kans op toelating verschilt nogal per opleiding. Voor sommige hoeven de eerstejaars bij nader inzien niet te loten. Dat geldt bijvoorbeeld voor pedagogiek aan de Hogeschool Utrecht. Daarvoor hebben zich 238 studiekiezers aangemeld voor 340 plaatsen. Voor psychologie in Leiden hebben zich precies vijftig studenten voor vijftig plaatsen opgegeven.


De kleinste kans hebben de aanmelders voor de universitaire opleiding tandheelkunde. Zeventien à twintig procent van de aanmelders kan daadwerkelijk tandarts worden, afhankelijk van de universiteit. Ook geneeskunde en diergeneeskunde moeten weer veel studiekiezers teleurstellen: tussen een kwart en een derde mag beginnen aan de faculteit van zijn keuze.


In het hbo is de lotingstudie forensisch onderzoek van de Hogeschool van Amsterdam opvallend populair. Minder dan één op de vijf aanmelders mag daaraan beginnen. Er zijn exact vierhonderd aanmeldingen voor slechts 75 plaatsen in de ‘CSI-opleiding’.


Ook de opleidingen mondzorgkunde moeten streng zijn. Slechts één op de vier belangstellenden mag aan de Hogeschool Utrecht van start in die opleiding. Bij Inholland en de Hogeschool van Arnhem en Nijmegen is dat één op de drie. In Groningen mogen nog iets meer van de aanmelders daadwerkelijk beginnen: 41 procent.


Wie wel is ingeloot, maar niet in de stad van zijn eerste voorkeur, kan proberen te ruilen via de ruilbeurs op de website van DUO. Die gaat morgen om 10.00 uur open. Ze moeten snel zijn, want wie het eerst komt, het eerst maalt. Op eigen houtje ruilen mag niet.

Dr. Ronald Hanson and Gijs de Lange from the Kavli Institute of Nanoscience (Applied Sciences) had a busy day last Friday. On Thursday, the article they co-authored with researchers from the Ames Lab (U.S. Department of Energy) was published in Science magazine. Almost immediately colleagues from all over the world began mailing and phoning to pass on their congratulations. “Our finding has opened up a whole new field of research”, Dr. Hanson says.
Their achievement had already been causing quite a stir, as maintaining a quantum state of an electron spin over anything longer than a microsecond is a big – possibly the biggest – hurdle in the development of quantum electronics. This is because other electron spins or nuclear spins usually disturb the quantum state under study before anything practical can be done with it. Or, as quantum physicists say, its coherence is broken by external perturbation.

What Dr. Hanson and his colleagues revealed in Science is that a series of ten nanosecond microwave pulses effectively shield an electron spin from external perturbations, just as was predicted some ten years ago. But Dr. Hanson and others were the first to actually demonstrate the effect. The more pulses, the longer the protection lasts. They showed that 136 pulses prolonged the coherence by a factor of 26. “Theoretically, there is no limit to it”, Hanson declares. Practically, what counts is that the coherence is long, compared to the time needed to manipulate the spin. In this case, the coherence lasts 10,000 times longer than setting the spin. In quantum computer talk, the microwave shield would allow researchers to perform some 10,000 operations before the quantum state collapses. This is all the more surprising because, contrary to most such experiments, which are performed in cryostats near 0° Kelvin, the researchers comfortably worked at room temperature.

Physically, the electron spin consists of an atomic defect in the grid of a synthetic diamond layer. If a nitrogen atom replaces one of the grid’s carbon atoms with an empty space opposite the nitrogen atom, the resulting nitrogen-vacancy (NV) centre will harbour a free electron. This electron’s spin can be set and read out by polarised laser pulses, which makes it, together with its ability to function at room temperature, a very user-friendly medium for quantum electronics.

The first application that Dr. Hanson is working on is not the much talked about quantum computer, but rather an atomic magnetic probe. If microwaves stabilise the electron spin sufficiently, researchers can perhaps also use the spin to measure magnetic fields on an atomic scale, or so the reasoning goes. 

Universal dynamical decoupling of a single solid-state spin from a spin bath, G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson,
Science, 9 September 2010.

Editor Redactie

Do you have a question or comment about this article?

delta@tudelft.nl

Comments are closed.